Papers
Topics
Authors
Recent
2000 character limit reached

Homogenization for the Stokes equations in randomly perforated domains under almost minimal assumptions on the size of the holes

Published 12 Sep 2018 in math.AP | (1809.04491v2)

Abstract: We prove the homogenization to the Brinkman equations for the incompressible Stokes equations in a bounded domain which is perforated by a random collection of small spherical holes. The fluid satisfies a no-slip boundary condition at the holes. The balls generating the holes have centres distributed according to a Poisson point process and i.i.d. unbounded radii satisfying a suitable moment condition. We stress that our assumption on the distribution of the radii does not exclude that, with overwhelming probability, the holes contain clusters made by many overlapping balls. We show that the formation of these clusters has no effect on the limit Brinkman equations. Due to the incompressiblility condition and the lack of a maximum principle for the Stokes equations, our proof requires a very careful study of the geometry of the random holes generated by the class of probability measures considered.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.