Probabilistic Binary Neural Networks (1809.03368v1)
Abstract: Low bit-width weights and activations are an effective way of combating the increasing need for both memory and compute power of Deep Neural Networks. In this work, we present a probabilistic training method for Neural Network with both binary weights and activations, called BLRNet. By embracing stochasticity during training, we circumvent the need to approximate the gradient of non-differentiable functions such as sign(), while still obtaining a fully Binary Neural Network at test time. Moreover, it allows for anytime ensemble predictions for improved performance and uncertainty estimates by sampling from the weight distribution. Since all operations in a layer of the BLRNet operate on random variables, we introduce stochastic versions of Batch Normalization and max pooling, which transfer well to a deterministic network at test time. We evaluate the BLRNet on multiple standardized benchmarks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.