Fairness-Aware Recommendation of Information Curators
Abstract: This paper highlights our ongoing efforts to create effective information curator recommendation models that can be personalized for individual users, while maintaining important fairness properties. Concretely, we introduce the problem of information curator recommendation, provide a high-level overview of a fairness-aware recommender, and introduce some preliminary experimental evidence over a real-world Twitter dataset. We conclude with some thoughts on future directions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.