Papers
Topics
Authors
Recent
2000 character limit reached

Metamorphic Relation Based Adversarial Attacks on Differentiable Neural Computer

Published 7 Sep 2018 in cs.LG, cs.CR, and cs.NE | (1809.02444v1)

Abstract: Deep neural networks (DNN), while becoming the driving force of many novel technology and achieving tremendous success in many cutting-edge applications, are still vulnerable to adversarial attacks. Differentiable neural computer (DNC) is a novel computing machine with DNN as its central controller operating on an external memory module for data processing. The unique architecture of DNC contributes to its state-of-the-art performance in tasks which requires the ability to represent variables and data structure as well as to store data over long timescales. However, there still lacks a comprehensive study on how adversarial examples affect DNC in terms of robustness. In this paper, we propose metamorphic relation based adversarial techniques for a range of tasks described in the natural processing language domain. We show that the near-perfect performance of the DNC in bAbI logical question answering tasks can be degraded by adversarially injected sentences. We further perform in-depth study on the role of DNC's memory size in its robustness and analyze the potential reason causing why DNC fails. Our study demonstrates the current challenges and potential opportunities towards constructing more robust DNCs.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.