Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online optimization in dynamic environments: a regret analysis for sparse problems (1809.02439v1)

Published 7 Sep 2018 in math.OC

Abstract: Time-varying systems are a challenge in many scientific and engineering areas. Usually, estimation of time-varying parameters or signals must be performed online, which calls for the development of responsive online algorithms. In this paper, we consider this problem in the context of the sparse optimization; specifically, we consider the Elastic-net model, which promotes parsimonious solutions. Following the rationale in \cite{mok16}, we propose an online algorithm and we theoretically prove that it is successful in terms of dynamic regret. We then show an application to the problem of recursive identification of time-varying autoregressive models, in the case when the number of parameters to be estimated is unknown. Numerical results show the practical efficiency of the proposed method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.