Papers
Topics
Authors
Recent
Search
2000 character limit reached

W-types in setoids

Published 7 Sep 2018 in math.LO | (1809.02375v7)

Abstract: We present a construction of W-types in the setoid model of extensional Martin-L\"of type theory using dependent W-types in the underlying intensional theory. More precisely, we prove that the internal category of setoids has initial algebras for polynomial endofunctors. In particular, we characterise the setoid of algebra morphisms from the initial algebra to a given algebra as a setoid on a dependent W-type. We conclude by discussing the case of free setoids. We work in a fully intensional theory and, in fact, we assume identity types only when discussing free setoids. By using dependent W-types we can also avoid elimination into a type universe. The results have been verified in Coq and a formalisation is available on the author's GitHub page.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.