Papers
Topics
Authors
Recent
2000 character limit reached

A weakly convergent fully inexact Douglas-Rachford method with relative error tolerance (1809.02312v1)

Published 7 Sep 2018 in math.OC and math.FA

Abstract: Douglas-Rachford method is a splitting algorithm for finding a zero of the sum of two maximal monotone operators. Each of its iterations requires the sequential solution of two proximal subproblems. The aim of this work is to present a fully inexact version of Douglas-Rachford method wherein both proximal subproblems are solved approximately within a relative error tolerance. We also present a semi-inexact variant in which the first subproblem is solved exactly and the second one inexactly. We prove that both methods generate sequences weakly convergent to the solution of the underlying inclusion problem, if any.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.