Polynomial solutions of $q$-Heun equation and ultradiscrete limit (1809.01428v2)
Abstract: We study polynomial-type solutions of the $q$-Heun equation, which is related with quasi-exact solvability. The condition that the $q$-Heun equation has a non-zero polynomial-type solution is described by the roots of the spectral polynomial, whose variable is the accessory parameter $E$. We obtain sufficient conditions that the roots of the spectral polynomial are all real and distinct. We consider the ultradiscrete limit to clarify the roots of the spectral polynomial and the zeros of the polynomial-type solution of the $q$-Heun equation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.