2000 character limit reached
Heavy Bernoulli-percolation clusters are indistinguishable (1809.01284v2)
Published 5 Sep 2018 in math.PR
Abstract: We prove that the heavy clusters are indistinguishable for Bernoulli percolation on quasi-transitive nonunimodular graphs. As an application, we show that the uniqueness threshold of any quasi-transitive graph is also the threshold for connectivity decay. This resolves a question of Lyons and Schramm (1999) in the Bernoulli percolation case and confirms a conjecture of Schonmann (2001). We also prove that every infinite cluster of Bernoulli percolation on a nonamenable quasi-transitive graph is transient almost surely.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.