Papers
Topics
Authors
Recent
2000 character limit reached

Heavy Bernoulli-percolation clusters are indistinguishable (1809.01284v2)

Published 5 Sep 2018 in math.PR

Abstract: We prove that the heavy clusters are indistinguishable for Bernoulli percolation on quasi-transitive nonunimodular graphs. As an application, we show that the uniqueness threshold of any quasi-transitive graph is also the threshold for connectivity decay. This resolves a question of Lyons and Schramm (1999) in the Bernoulli percolation case and confirms a conjecture of Schonmann (2001). We also prove that every infinite cluster of Bernoulli percolation on a nonamenable quasi-transitive graph is transient almost surely.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.