Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Infinitely Divisible Series: Tail Inequalities and Their Applications (1809.00781v2)

Published 4 Sep 2018 in cs.IT, math.IT, and math.OC

Abstract: In this paper, we study tail inequalities of the largest eigenvalue of a matrix infinitely divisible (i.d.) series, which is a finite sum of fixed matrices weighted by i.d. random variables. We obtain several types of tail inequalities, including Bennett-type and Bernstein-type inequalities. This allows us to further bound the expectation of the spectral norm of a matrix i.d. series. Moreover, by developing a new lower-bound function for $Q(s)=(s+1)\log(s+1)-s$ that appears in the Bennett-type inequality, we derive a tighter tail inequality of the largest eigenvalue of the matrix i.d. series than the Bernstein-type inequality when the matrix dimension is high. The resulting lower-bound function is of independent interest and can improve any Bennett-type concentration inequality that involves the function $Q(s)$. The class of i.d. probability distributions is large and includes Gaussian and Poisson distributions, among many others. Therefore, our results encompass the existing work \cite{tropp2012user} on matrix Gaussian series as a special case. Lastly, we show that the tail inequalities of a matrix i.d. series have applications in several optimization problems including the chance constrained optimization problem and the quadratic optimization problem with orthogonality constraints. In addition, we also use the resulting tail bounds to show that random matrices constructed from i.d. random variables satisfy the restricted isometry property (RIP) when it acts as a measurement matrix in compressed sensing.

Citations (2)

Summary

We haven't generated a summary for this paper yet.