Monoidal Grothendieck construction (1809.00727v4)
Abstract: We lift the standard equivalence between fibrations and indexed categories to an equivalence between monoidal fibrations and monoidal indexed categories, namely weak monoidal pseudofunctors to the 2-category of categories. In doing so, we investigate the relation between this global' monoidal structure where the total category is monoidal and the fibration strictly preserves the structure, and a
fibrewise' one where the fibres are monoidal and the reindexing functors strongly preserve the structure, first hinted by Shulman. In particular, when the domain is cocartesian monoidal, lax monoidal structures on the functor to the 2-category of categories correspond to lifts of the functor to the 2-category of monoidal categories. Finally, we give examples where this correspondence appears, spanning from the fundamental and family fibrations to network models and systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.