Cold-start recommendations in Collective Matrix Factorization (1809.00366v2)
Abstract: This work explores the ability of collective matrix factorization models in recommender systems to make predictions about users and items for which there is side information available but no feedback or interactions data, and proposes a new formulation with a faster cold-start prediction formula that can be used in real-time systems. While these cold-start recommendations are not as good as warm-start ones, they were found to be of better quality than non-personalized recommendations, and predictions about new users were found to be more reliable than those about new items. The formulation proposed here resulted in improved cold-start recommendations in many scenarios, at the expense of worse warm-start ones.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.