Papers
Topics
Authors
Recent
2000 character limit reached

Dimensionality-Reduction of Climate Data using Deep Autoencoders (1809.00027v1)

Published 27 Aug 2018 in physics.ao-ph and physics.flu-dyn

Abstract: We explore the use of deep neural networks for nonlinear dimensionality reduction in climate applications. We train convolutional autoencoders (CAEs) to encode two temperature field datasets from pre-industrial control runs in the CMIP5 first ensemble, obtained with the CCSM4 model and the IPSL-CM5A-LR model, respectively. With the later dataset, consisting of 36500 96$\times$96 surface temperature fields, the CAE out-performs PCA in terms of mean squared error of the reconstruction from a 40 dimensional encoding. Moreover, the noise in the filters of the convolutional layers in the autoencoders suggests that the CAE can be trained to produce better results. Our results indicate that convolutional autoencoders may provide an effective platform for the construction of surrogate climate models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.