Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Ramsey numbers of Berge-hypergraphs and related structures (1808.09863v4)

Published 29 Aug 2018 in math.CO

Abstract: For a graph $G=(V,E)$, a hypergraph $\mathcal{H}$ is called a Berge-$G$, denoted by $BG$, if there exists a bijection $f: E(G) \to E(\mathcal{H})$ such that for every $e \in E(G)$, $e \subseteq f(e)$. Let the Ramsey number $Rr(BG,BG)$ be the smallest integer $n$ such that for any $2$-edge-coloring of a complete $r$-uniform hypergraph on $n$ vertices, there is a monochromatic Berge-$G$ subhypergraph. In this paper, we show that the 2-color Ramsey number of Berge cliques is linear. In particular, we show that $R3(BK_s, BK_t) = s+t-3$ for $s,t \geq 4$ and $\max(s,t) \geq 5$ where $BK_n$ is a Berge-$K_n$ hypergraph. For higher uniformity, we show that $R4(BK_t, BK_t) = t+1$ for $t\geq 6$ and $Rk(BK_t, BK_t)=t$ for $k \geq 5$ and $t$ sufficiently large. We also investigate the Ramsey number of trace hypergraphs, suspension hypergraphs and expansion hypergraphs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.