Recognizing quasi-categorical limits and colimits in homotopy coherent nerves (1808.09834v3)
Abstract: In this paper we prove that various quasi-categories whose objects are $\infty$-categories in a very general sense are complete: admitting limits indexed by all simplicial sets. This result and others of a similar flavor follow from a general theorem in which we characterize the data that is required to define a limit cone in a quasi-category constructed as a homotopy coherent nerve. Since all quasi-categories arise this way up to equivalence, this analysis covers the general case. Namely, we show that quasi-categorical limit cones may be modeled at the point-set level by pseudo homotopy limit cones, whose shape is governed by the weight for pseudo limits over a homotopy coherent diagram but with the defining universal property up to equivalence, rather than isomorphism, of mapping spaces. Our applications follow from the fact that the $(\infty,1)$-categorical core of an $\infty$-cosmos admits weighted homotopy limits for all flexible weights, which includes in particular the weight for pseudo cones.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.