The geometry of the Einstein--Podolsky--Rosen correlations
Abstract: Correlations between distant particles are central to many puzzles and paradoxes of quantum mechanics and, at the same time, underpin various applications like quantum cryptography and metrology. Originally in 1935, Einstein, Podolsky and Rosen (EPR) used these correlations to argue against the completeness of quantum mechanics. To formalise their argument, Schr\"odinger subsequently introduced the notion of quantum steering. Still, the question which quantum states can be used for the EPR argument and which not remained open. Here we show that quantum steering can be viewed as an inclusion problem in convex geometry. For the case of two spin-$\frac{1}{2}$ particles, this approach completely characterises the set of states leading to the EPR argument and consequently to a full description of the quantum correlations that can be used for steering. Our results find applications in various protocols in quantum information processing, and moreover they are linked to quantum mechanical phenomena such as uncertainty relations and the question which observables in quantum mechanics are jointly measurable.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.