Papers
Topics
Authors
Recent
Search
2000 character limit reached

Disfluency Detection using Auto-Correlational Neural Networks

Published 28 Aug 2018 in cs.CL | (1808.09092v3)

Abstract: In recent years, the natural language processing community has moved away from task-specific feature engineering, i.e., researchers discovering ad-hoc feature representations for various tasks, in favor of general-purpose methods that learn the input representation by themselves. However, state-of-the-art approaches to disfluency detection in spontaneous speech transcripts currently still depend on an array of hand-crafted features, and other representations derived from the output of pre-existing systems such as LLMs or dependency parsers. As an alternative, this paper proposes a simple yet effective model for automatic disfluency detection, called an auto-correlational neural network (ACNN). The model uses a convolutional neural network (CNN) and augments it with a new auto-correlation operator at the lowest layer that can capture the kinds of "rough copy" dependencies that are characteristic of repair disfluencies in speech. In experiments, the ACNN model outperforms the baseline CNN on a disfluency detection task with a 5% increase in f-score, which is close to the previous best result on this task.

Citations (40)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.