Deep Convolutional Neural Network with Mixup for Environmental Sound Classification (1808.08405v1)
Abstract: Environmental sound classification (ESC) is an important and challenging problem. In contrast to speech, sound events have noise-like nature and may be produced by a wide variety of sources. In this paper, we propose to use a novel deep convolutional neural network for ESC tasks. Our network architecture uses stacked convolutional and pooling layers to extract high-level feature representations from spectrogram-like features. Furthermore, we apply mixup to ESC tasks and explore its impacts on classification performance and feature distribution. Experiments were conducted on UrbanSound8K, ESC-50 and ESC-10 datasets. Our experimental results demonstrated that our ESC system has achieved the state-of-the-art performance (83.7%) on UrbanSound8K and competitive performance on ESC-50 and ESC-10.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.