Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Improving Super-Resolution Methods via Incremental Residual Learning (1808.07110v2)

Published 21 Aug 2018 in cs.CV

Abstract: Recently, Convolutional Neural Networks (CNNs) have shown promising performance in super-resolution (SR). However, these methods operate primarily on Low Resolution (LR) inputs for memory efficiency but this limits, as we demonstrate, their ability to (i) model high frequency information; and (ii) smoothly translate from LR to High Resolution (HR) space. To this end, we propose a novel Incremental Residual Learning (IRL) framework to address these mentioned issues. In IRL, first we select a typical SR pre-trained network as a master branch. Next we sequentially train and add residual branches to the main branch, where each residual branch is learned to model accumulated residuals of all previous branches. We plug state of the art methods in IRL framework and demonstrate consistent performance improvement on public benchmark datasets to set a new state of the art for SR at only approximately 20% increase in training time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.