Quantifying the Computational Advantage of Forward Orthogonal Deviations (1808.05995v1)
Abstract: Under suitable conditions, one-step generalized method of moments (GMM) based on the first-difference (FD) transformation is numerically equal to one-step GMM based on the forward orthogonal deviations (FOD) transformation. However, when the number of time periods ($T$) is not small, the FOD transformation requires less computational work. This paper shows that the computational complexity of the FD and FOD transformations increases with the number of individuals ($N$) linearly, but the computational complexity of the FOD transformation increases with $T$ at the rate $T{4}$ increases, while the computational complexity of the FD transformation increases at the rate $T{6}$ increases. Simulations illustrate that calculations exploiting the FOD transformation are performed orders of magnitude faster than those using the FD transformation. The results in the paper indicate that, when one-step GMM based on the FD and FOD transformations are the same, Monte Carlo experiments can be conducted much faster if the FOD version of the estimator is used.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.