Locality and digital quantum simulation of power-law interactions (1808.05225v2)
Abstract: The propagation of information in non-relativistic quantum systems obeys a speed limit known as a Lieb-Robinson bound. We derive a new Lieb-Robinson bound for systems with interactions that decay with distance $r$ as a power law, $1/r\alpha$. The bound implies an effective light cone tighter than all previous bounds. Our approach is based on a technique for approximating the time evolution of a system, which was first introduced as part of a quantum simulation algorithm by Haah et al., FOCS'18. To bound the error of the approximation, we use a known Lieb-Robinson bound that is weaker than the bound we establish. This result brings the analysis full circle, suggesting a deep connection between Lieb-Robinson bounds and digital quantum simulation. In addition to the new Lieb-Robinson bound, our analysis also gives an error bound for the Haah et al. quantum simulation algorithm when used to simulate power-law decaying interactions. In particular, we show that the gate count of the algorithm scales with the system size better than existing algorithms when $\alpha>3D$ (where $D$ is the number of dimensions).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.