Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models

Published 14 Aug 2018 in cs.LG and stat.ML | (1808.04768v3)

Abstract: We introduce a method which enables a recurrent dynamics model to be temporally abstract. Our approach, which we call Adaptive Skip Intervals (ASI), is based on the observation that in many sequential prediction tasks, the exact time at which events occur is irrelevant to the underlying objective. Moreover, in many situations, there exist prediction intervals which result in particularly easy-to-predict transitions. We show that there are prediction tasks for which we gain both computational efficiency and prediction accuracy by allowing the model to make predictions at a sampling rate which it can choose itself.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.