Papers
Topics
Authors
Recent
2000 character limit reached

Probabilistic Ensemble of Collaborative Filters (1808.03298v2)

Published 26 Jun 2018 in cs.IR, cs.LG, and stat.ML

Abstract: Collaborative filtering is an important technique for recommendation. Whereas it has been repeatedly shown to be effective in previous work, its performance remains unsatisfactory in many real-world applications, especially those where the items or users are highly diverse. In this paper, we explore an ensemble-based framework to enhance the capability of a recommender in handling diverse data. Specifically, we formulate a probabilistic model which integrates the items, the users, as well as the associations between them into a generative process. On top of this formulation, we further derive a progressive algorithm to construct an ensemble of collaborative filters. In each iteration, a new filter is derived from re-weighted entries and incorporated into the ensemble. It is noteworthy that while the algorithmic procedure of our algorithm is apparently similar to boosting, it is derived from an essentially different formulation and thus differs in several key technical aspects. We tested the proposed method on three large datasets, and observed substantial improvement over the state of the art, including L2Boost, an effective method based on boosting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.