Papers
Topics
Authors
Recent
Search
2000 character limit reached

Likely equilibria of stochastic hyperelastic spherical shells and tubes

Published 25 Jul 2018 in cond-mat.soft and math.PR | (1808.02110v8)

Abstract: In large deformations, internally pressurised elastic spherical shells and tubes may undergo a limit-point, or inflation, instability manifested by a rapid transition in which their radii suddenly increase. The possible existence of such an instability depends on the material constitutive model. Here, we revisit this problem in the context of stochastic incompressible hyperelastic materials, and ask the question: what is the probability distribution of stable radially symmetric inflation, such that the internal pressure always increases as the radial stretch increases? For the classic elastic problem, involving isotropic incompressible materials, there is a critical parameter value that strictly separates the cases where inflation instability can occur or not. By contrast, for the stochastic problem, we show that the inherent variability of the probabilistic parameters implies that there is always competition between the two cases. To illustrate this, we draw on published experimental data for rubber, and derive the probability distribution of the corresponding random shear modulus to predict the inflation responses for a spherical shell and a cylindrical tube made of a material characterised by this parameter.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.