Papers
Topics
Authors
Recent
Search
2000 character limit reached

Statistical Windows in Testing for the Initial Distribution of a Reversible Markov Chain

Published 6 Aug 2018 in math.ST, cs.LG, stat.ML, and stat.TH | (1808.01857v1)

Abstract: We study the problem of hypothesis testing between two discrete distributions, where we only have access to samples after the action of a known reversible Markov chain, playing the role of noise. We derive instance-dependent minimax rates for the sample complexity of this problem, and show how its dependence in time is related to the spectral properties of the Markov chain. We show that there exists a wide statistical window, in terms of sample complexity for hypothesis testing between different pairs of initial distributions. We illustrate these results in several concrete examples.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.