2000 character limit reached
Robust Spectral Filtering and Anomaly Detection (1808.01181v1)
Published 3 Aug 2018 in cs.LG, math.OC, and stat.ML
Abstract: We consider a setting, where the output of a linear dynamical system (LDS) is, with an unknown but fixed probability, replaced by noise. There, we present a robust method for the prediction of the outputs of the LDS and identification of the samples of noise, and prove guarantees on its statistical performance. One application lies in anomaly detection: the samples of noise, unlikely to have been generated by the dynamics, can be flagged to operators of the system for further study.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.