Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Open Newton Method for Piecewise Smooth Functions (1808.00213v1)

Published 1 Aug 2018 in math.OC and math.NA

Abstract: Recent research has shown that piecewise smooth (PS) functions can be approximated by piecewise linear functions with second order error in the distance to a given reference point. A semismooth Newton type algorithm based on successive application of these piecewise linearizations was subsequently developed for the solution of PS equation systems. For local bijectivity of the linearization at a root, a radius of quadratic convergence was explicitly calculated in terms of local Lipschitz constants of the underlying PS function. In the present work we relax the criterium of local bijectivity of the linearization to local openness. For this purpose a weak implicit function theorem is proved via local mapping degree theory. It is shown that there exist PS functions $f:\mathbb R2\rightarrow\mathbb R2$ satisfying the weaker criterium where every neighborhood of the root of $f$ contains a point $x$ such that all elements of the Clarke Jacobian at $x$ are singular. In such neighborhoods the steps of classical semismooth Newton are not defined, which establishes the new method as an independent algorithm. To further clarify the relation between a PS function and its piecewise linearization, several statements about structure correspondences between the two are proved. Moreover, the influence of the specific representation of the local piecewise linear models on the robustness of our method is studied. An example application from cardiovascular mathematics is given.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.