Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Squashed Toric Manifolds and Higher Depth Mock Modular Forms (1808.00012v2)

Published 31 Jul 2018 in hep-th and math.NT

Abstract: Squashed toric sigma models are a class of sigma models whose target space is a toric manifold in which the torus fibration is squashed away from the fixed points so as to produce a neck-like region. The elliptic genera of squashed toric-Calabi-Yau manifolds are known to obey the modular transformation property of holomorphic Jacobi forms, but have an explicit non-holomorphic dependence on the modular parameter. The elliptic genus of the simplest one-dimensional example is known to be a mixed mock Jacobi form, but the precise automorphic nature for the general case remained to be understood. We show that these elliptic genera fall precisely into a class of functions called higher-depth mock modular forms that have been formulated recently in terms of indefinite theta series. We also compute a generalization of the elliptic genera of these models corresponding to an additional set of charges corresponding to the toric symmetries. Finally we speculate on some relations of the elliptic genera of squashed toric models with the Vafa-Witten partition functions of $\mathcal{N}=4$ SYM theory on $\mathbb{CP}2$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.