Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Regular self-dual and self-Petrie-dual maps of arbitrary valency (1807.11692v1)

Published 31 Jul 2018 in math.CO

Abstract: The main result of D. Archdeacon, M. Conder and J. \v{S}ir\'a\v{n} [Trans. Amer. Math. Soc. 366 (2014) 8, 4491-4512] implies existence of a regular, self-dual and self-Petrie dual map of any given even valency. In this paper we extend this result to any odd valency $\ge 5$. This is done by algebraic number theory and maps defined on the groups ${\rm PSL}(2,p)$ in the case of odd prime valency $\ge 5$ and valency $9$, and by coverings for the remaining odd valencies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.