Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the use of Singular Spectrum Analysis (1807.10679v1)

Published 27 Jul 2018 in eess.SP

Abstract: Singular Spectrum Analysis (SSA) or Singular Value Decomposition (SVD) are often used to de-noise univariate time series or to study their spectral profile. Both techniques rely on the eigendecomposition of the cor- relation matrix estimated after embedding the signal into its delayed coordi- nates. In this work we show that the eigenvectors can be used to calculate the coefficients of a set of filters which form a filter bank. The properties of these filters are derived. In particular we show that their outputs can be grouped according to their frequency response. Furthermore, the fre- quency at the maximum of each frequency response and the corresponding eigenvalue can provide a power spectrum estimation of the time series. Two different applications illustrate how both characteristics can be applied to analyze wideband signals in order to achieve narrow-band signals or to infer their frequency occupation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.