Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bivariate network meta-analysis for surrogate endpoint evaluation (1807.08928v1)

Published 24 Jul 2018 in stat.ME

Abstract: Surrogate endpoints are very important in regulatory decision-making in healthcare, in particular if they can be measured early compared to the long-term final clinical outcome and act as good predictors of clinical benefit. Bivariate meta-analysis methods can be used to evaluate surrogate endpoints and to predict the treatment effect on the final outcome from the treatment effect measured on a surrogate endpoint. However, candidate surrogate endpoints are often imperfect, and the level of association between the treatment effects on the surrogate and final outcomes may vary between treatments. This imposes a limitation on the pairwise methods which do not differentiate between the treatments. We develop bivariate network meta-analysis (bvNMA) methods which combine data on treatment effects on the surrogate and final outcomes, from trials investigating heterogeneous treatment contrasts. The bvNMA methods estimate the effects on both outcomes for all treatment contrasts individually in a single analysis. At the same time, they allow us to model the surrogacy patterns across multiple trials (different populations) within a treatment contrast and across treatment contrasts, thus enabling predictions of the treatment effect on the final outcome for a new study in a new population or investigating a new treatment. Modelling assumptions about the between-studies heterogeneity and the network consistency, and their impact on predictions, are investigated using simulated data and an illustrative example in advanced colorectal cancer. When the strength of the surrogate relationships varies across treatment contrasts, bvNMA has the advantage of identifying treatments for which surrogacy holds, thus leading to better predictions.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube