Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Machine Learning Uncertainties with Adversarial Neural Networks (1807.08763v2)

Published 23 Jul 2018 in hep-ph and hep-ex

Abstract: Machine Learning is a powerful tool to reveal and exploit correlations in a multi-dimensional parameter space. Making predictions from such correlations is a highly non-trivial task, in particular when the details of the underlying dynamics of a theoretical model are not fully understood. Using adversarial networks, we include a priori known sources of systematic and theoretical uncertainties during the training. This paves the way to a more reliable event classification on an event-by-event basis, as well as novel approaches to perform parameter fits of particle physics data. We demonstrate the benefits of the method explicitly in an example considering effective field theory extensions of Higgs boson production in association with jets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.