Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PaloBoost: An Overfitting-robust TreeBoost with Out-of-Bag Sample Regularization Techniques (1807.08383v1)

Published 22 Jul 2018 in stat.ML, cs.LG, and stat.ME

Abstract: Stochastic Gradient TreeBoost is often found in many winning solutions in public data science challenges. Unfortunately, the best performance requires extensive parameter tuning and can be prone to overfitting. We propose PaloBoost, a Stochastic Gradient TreeBoost model that uses novel regularization techniques to guard against overfitting and is robust to parameter settings. PaloBoost uses the under-utilized out-of-bag samples to perform gradient-aware pruning and estimate adaptive learning rates. Unlike other Stochastic Gradient TreeBoost models that use the out-of-bag samples to estimate test errors, PaloBoost treats the samples as a second batch of training samples to prune the trees and adjust the learning rates. As a result, PaloBoost can dynamically adjust tree depths and learning rates to achieve faster learning at the start and slower learning as the algorithm converges. We illustrate how these regularization techniques can be efficiently implemented and propose a new formula for calculating feature importance to reflect the node coverages and learning rates. Extensive experimental results on seven datasets demonstrate that PaloBoost is robust to overfitting, is less sensitivity to the parameters, and can also effectively identify meaningful features.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube