Arithmetic aspects of symmetric edge polytopes (1807.07678v1)
Abstract: We investigate arithmetic, geometric and combinatorial properties of symmetric edge polytopes. We give a complete combinatorial description of their facets. By combining Gr\"obner basis techniques, half-open decompositions and methods for interlacing polynomials we provide an explicit formula for the $h\ast$-polynomial in case of complete bipartite graphs. In particular, we show that the $h\ast$-polynomial is $\gamma$-positive and real-rooted. This proves Gal's conjecture for arbitrary flag unimodular triangulations in this case, and, beyond that, we prove a strengthing due to Nevo and Petersen (2011).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.