Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

When Do Gomory-Hu Subtrees Exist? (1807.07331v1)

Published 19 Jul 2018 in cs.DM and math.CO

Abstract: Gomory-Hu (GH) Trees are a classical sparsification technique for graph connectivity. It is one of the fundamental models in combinatorial optimization which also continually finds new applications, most recently in social network analysis. For any edge-capacitated undirected graph $G=(V,E)$ and any subset of {\em terminals} $Z \subseteq V$, a Gomory-Hu Tree is an edge-capacitated tree $T=(Z,E(T))$ such that for every $u,v \in Z$, the value of the minimum capacity $uv$ cut in $G$ is the same as in $T$. Moreover, the minimum cuts in $T$ directly identify (in a certain way) those in $G$. It is well-known that we may not always find a GH tree which is a subgraph of $G$. For instance, every GH tree for the vertices of $K_{3,3}$ is a $5$-star. We characterize those graph and terminal pairs $(G,Z)$ which always admit such a tree. We show that these are the graphs which have no \emph{terminal-$K_{2,3}$ minor}. That is, no $K_{2,3}$ minor whose vertices correspond to terminals in $Z$. We also show that the family of pairs $(G,Z)$ which forbid such $K_{2,3}$ "$Z$-minors" arises, roughly speaking, from so-called Okamura-Seymour instances. More precisely, they are subgraphs of {\em $Z$-webs}. A $Z$-web is built from planar graphs with one outside face which contains all the terminals and each inner face is a triangle which may contain an arbitrary graph. This characterization yields an additional consequence for multiflow problems. Fix a graph $G$ and a subset $Z \subseteq V(G)$ of terminals. Call $(G,Z)$ {\em cut-sufficient} if the cut condition is sufficient to characterize the existence of a multiflow for any demands between vertices in $Z$, and any edge capacities on $G$. Then $(G,Z)$ is cut-sufficient if and only if it is terminal-$K_{2,3}$ free.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.