Papers
Topics
Authors
Recent
2000 character limit reached

Linear Model Regression on Time-series Data: Non-asymptotic Error Bounds and Applications (1807.06611v2)

Published 17 Jul 2018 in math.OC

Abstract: Data-driven methods for modeling dynamic systems have received considerable attention as they provide a mechanism for control synthesis directly from the observed time-series data. In the absence of prior assumptions on how the time-series had been generated, regression on the system model has been particularly popular. In the linear case, the resulting least squares setup for model regression, not only provides a computationally viable method to fit a model to the data, but also provides useful insights into the modal properties of the underlying dynamics. Although probabilistic estimates for this model regression have been reported, deterministic error bounds have not been examined in the literature, particularly as they pertain to the properties of the underlying system. In this paper, we provide deterministic non-asymptotic error bounds for fitting a linear model to the observed time-series data, with a particular attention to the role of symmetry and eigenvalue multiplicity in the underlying system matrix.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.