Papers
Topics
Authors
Recent
2000 character limit reached

A comprehensive study of sparse representation techniques for offline signature verification (1807.05039v4)

Published 13 Jul 2018 in cs.CV

Abstract: In this work, a feature extraction method for offline signature verification is presented that harnesses the power of sparse representation in order to deliver state-of-the-art verification performance in several signature datasets like CEDAR, MCYT-75, GPDS and UTSIG. Beyond the accuracy improvements, several major parameters associated with sparse representation; such as selected configuration, dictionary size, sparsity level and positivity priors are investigated. Besides, it is evinced that 2nd order statistics of the sparse codes is a powerful pooling function for the formation of the global signature descriptor. Also, a thorough evaluation of the effects of preprocessing is introduced by an automated algorithm in order to select the optimum thinning level. Finally, a segmentation strategy which employs a special form of spatial pyramid tailored to the problem of sparse representation is presented along with the enhancing of the produced descriptor on meaningful areas of the signature as emerged from the BRISK key-point detection mechanism. The obtained state-of-the-art results on the most challenging signature datasets provide a strong indication towards the benefits of learned features, even in writer dependent (WD) scenarios with a unique model for each writer and only a few available reference samples of him/her.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.