Papers
Topics
Authors
Recent
2000 character limit reached

A Quantum Algorithm for Solving Linear Differential Equations: Theory and Experiment

Published 12 Jul 2018 in quant-ph | (1807.04553v1)

Abstract: We present and experimentally realize a quantum algorithm for efficiently solving the following problem: given an $N\times N$ matrix $\mathcal{M}$, an $N$-dimensional vector $\textbf{\emph{b}}$, and an initial vector $\textbf{\emph{x}}(0)$, obtain a target vector $\textbf{\emph{x}}(t)$ as a function of time $t$ according to the constraint $d\textbf{\emph{x}}(t)/dt=\mathcal{M}\textbf{\emph{x}}(t)+\textbf{\emph{b}}$. We show that our algorithm exhibits an exponential speedup over its classical counterpart in certain circumstances. In addition, we demonstrate our quantum algorithm for a $4\times4$ linear differential equation using a 4-qubit nuclear magnetic resonance quantum information processor. Our algorithm provides a key technique for solving many important problems which rely on the solutions to linear differential equations.

Citations (64)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.