Papers
Topics
Authors
Recent
2000 character limit reached

Process Discovery using Classification Tree Hidden Semi-Markov Model

Published 12 Jul 2018 in stat.ML and cs.LG | (1807.04415v1)

Abstract: Various and ubiquitous information systems are being used in monitoring, exchanging, and collecting information. These systems are generating massive amount of event sequence logs that may help us understand underlying phenomenon. By analyzing these logs, we can learn process models that describe system procedures, predict the development of the system, or check whether the changes are expected. In this paper, we consider a novel technique that models these sequences of events in temporal-probabilistic manners. Specifically, we propose a probabilistic process model that combines hidden semi-Markov model and classification trees learning. Our experimental result shows that the proposed approach can answer a kind of question-"what are the most frequent sequence of system dynamics relevant to a given sequence of observable events?". For example, "Given a series of medical treatments, what are the most relevant patients' health condition pattern changes at different times?"

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.