Papers
Topics
Authors
Recent
2000 character limit reached

Pencil-based algorithms for tensor rank decomposition are not stable (1807.04159v1)

Published 11 Jul 2018 in math.NA

Abstract: We prove the existence of an open set of $n_1\times n_2 \times n_3$ tensors of rank $r$ on which a popular and efficient class of algorithms for computing tensor rank decompositions based on a reduction to a linear matrix pencil, typically followed by a generalized eigendecomposition, is arbitrarily numerically forward unstable. Our analysis shows that this problem is caused by the fact that the condition number of the tensor rank decomposition can be much larger for $n_1 \times n_2 \times 2$ tensors than for the $n_1\times n_2 \times n_3$ input tensor. Moreover, we present a lower bound for the limiting distribution of the condition number of random tensor rank decompositions of third-order tensors. The numerical experiments illustrate that for random tensor rank decompositions one should anticipate a loss of precision of a few digits.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.