2000 character limit reached
An index of strongly Callias operators on Lorentzian manifolds with non-compact boundary (1807.03851v2)
Published 10 Jul 2018 in math.DG
Abstract: We consider a hyperbolic Dirac-type operator with growing potential on a a spatially non-compact globally hyperbolic manifold. We show that the Atiyah-Patodi-Singer boundary value problem for such operator is Fredholm and obtain a formula for this index in terms of the local integrals and the relative eta-invariant introduced by Braverman and Shi. This extends recent results of B\"ar and Strohmaier, who studied the index of a hyperbolic Dirac operator on a spatially compact globally hyperbolic manifold.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.