Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Customised Structural Elicitation (1807.03693v1)

Published 10 Jul 2018 in stat.ME

Abstract: Established methods for structural elicitation typically rely on code modelling standard graphical models classes, most often Bayesian networks. However, more appropriate models may arise from asking the expert questions in common language about what might relate to what and exploring the logical implications of the statements. Only after identifying the best matching structure should this be embellished into a fully quantified probability model. Examples of the efficacy and potential of this more flexible approach are shown below for four classes of graphical models: Bayesian networks, Chain Event Graphs, Multi-regression Dynamic Models, and Flow Graphs. We argue that to be fully effective any structural elicitation phase must first be customised to an application and if necessary new types of structure with their own bespoke semantics elicited.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.