Non-Convex Multi-species Hopfield models (1807.03609v1)
Abstract: In this work we introduce a multi-species generalization of the Hopfield model for associative memory, where neurons are divided into groups and both inter-groups and intra-groups pair-wise interactions are considered, with different intensities. Thus, this system contains two of the main ingredients of modern Deep neural network architectures: Hebbian interactions to store patterns of information and multiple layers coding different levels of correlations. The model is completely solvable in the low-load regime with a suitable generalization of the Hamilton-Jacobi technique, despite the Hamiltonian can be a non-definite quadratic form of the magnetizations. The family of multi-species Hopfield model includes, as special cases, the 3-layers Restricted Boltzmann Machine (RBM) with Gaussian hidden layer and the Bidirectional Associative Memory (BAM) model.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.