Papers
Topics
Authors
Recent
2000 character limit reached

On the Uniqueness for One-Dimensional Constrained Hamilton-Jacobi Equations (1807.03432v1)

Published 10 Jul 2018 in math.AP

Abstract: The goal of this paper is to study uniqueness of a one-dimensional Hamilton-Jacobi equation \begin{equation*} \begin{cases} u_t=|u_x|2+R(x,I(t)) &\text{in }\mathbb{R} \times (0,\infty), \max_{\mathbb{R}} u(\cdot,t)=0 &\text{on }[0,\infty), \end{cases} \end{equation*} with an initial condition $u_0(x,0)=u_0(x)$ on $\mathbb{R}$. A reaction term $R(x,I(t))$ is given while $I(t)$ is an unknown constraint (Lagrange multiplier) that forces maximum of $u$ to be always zero. In the paper, we prove uniqueness of a pair of unknowns (u,I) using dynamic programming principle in one dimensional space for some particular class of nonseparable reaction $R(x,I(t))$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.