Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A primal-dual interior-point relaxation method for nonlinear programs (1807.02959v1)

Published 9 Jul 2018 in math.OC

Abstract: We prove that the classic logarithmic barrier problem is equivalent to a particular logarithmic barrier positive relaxation problem with barrier and scaling parameters. Based on the equivalence, a line-search primal-dual interior-point relaxation method for nonlinear programs is presented. Our method does not require any primal or dual iterates to be interior-points, which is prominently different from the existing interior-point methods in the literature. A new logarithmic barrier penalty function dependent on both primal and dual variables is used to prompt the global convergence of the method, where the penalty parameter is updated adaptively. Without assuming any regularity condition, it is proved that our method will terminate at an approximate KKT point of the original problem provided the barrier parameter tends zero. Otherwise, either an approximate infeasible stationary point or an approximate singular stationary point of the original problem will be found. Some preliminary numerical results are reported, including the results for a well-posed problem for which many line-search interior-point methods were demonstrated not to be globally convergent, a feasible problem for which the LICQ and the MFCQ fail to hold at the solution and an infeasible problem, and for some standard test problems of the CUTE collection. These results show that our algorithm is not only efficient for well-posed feasible problems, but also is applicable for some ill-posed feasible problems and some even infeasible problems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube