Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Interior Point Method with Modified Augmented Lagrangian for Penalty-Barrier Nonlinear Programming (1806.03347v1)

Published 8 Jun 2018 in math.NA

Abstract: We present a numerical method for the local solution of nonlinear programming problems. The SUMT approach of Fiacco and McCormick results in a merit function with quadratic penalties and logarithmic barriers. Our NLP solver works by directly minimizing this merit function. In our method, we use different concepts that each shall aim at the efficient treatment of one respective special feature of this merit function. The features are: large quadratic penalty terms, and badly scaled logarithmic barriers. The quadratic penalties are treated with a modified Augmented Lagrangian technique. It enables large step sizes despite nonlinearity of the equality constraints. The logarithmic barriers we treat with a primal-dual interior-point path-following technique. We prove global convergence of the method and local quadratic convergence. We further prove weak polynomial time-complexity in the special case where the nonlinear program is a linear program. We also use a trust-funnel so to avoid that the method converges to any stationary points that are infeasible to the constraints.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube