Revisiting the Jones eigenproblem in fluid-structure interaction (1807.01359v2)
Abstract: The Jones eigenvalue problem first described by D.S. Jones in 1983 concerns unusual modes in bounded elastic bodies: time-harmonic displacements whose tractions and normal components are both identically zero on the boundary. This problem is usually associated with a lack of unique solvability for certain models of fluid-structure interaction. The boundary conditions in this problem appear, at first glance, to rule out {\it any} non-trivial modes unless the domain possesses significant geometric symmetries. Indeed, Jones modes were shown to not be possible in most $C\infty$ domains (see article by T. Harg\'e 1990). However, we should in this paper that while the existence of Jones modes sensitively depends on the domain geometry, such modes {\it do} exist in a broad class of domains. This paper presents the first detailed theoretical and computational investigation of this eigenvalue problem in Lipschitz domains. We also analytically demonstrate Jones modes on some simple geometries.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.