Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Adaptive Optimal Transport (1807.00393v2)

Published 1 Jul 2018 in math.OC

Abstract: An adaptive, adversarial methodology is developed for the optimal transport problem between two distributions $\mu$ and $\nu$, known only through a finite set of independent samples $(x_i){i=1..N}$ and $(y_j){j=1..M}$. The methodology automatically creates features that adapt to the data, thus avoiding reliance on a priori knowledge of data distribution. Specifically, instead of a discrete point-bypoint assignment, the new procedure seeks an optimal map $T(x)$ defined for all $x$, minimizing the Kullback-Leibler divergence between $(T(xi))$ and the target $(y_j)$. The relative entropy is given a sample-based, variational characterization, thereby creating an adversarial setting: as one player seeks to push forward one distribution to the other, the second player develops features that focus on those areas where the two distributions fail to match. The procedure solves local problems matching consecutive, intermediate distributions between $\mu$ and $\nu$. As a result, maps of arbitrary complexity can be built by composing the simple maps used for each local problem. Displaced interpolation is used to guarantee global from local optimality. The procedure is illustrated through synthetic examples in one and two dimensions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube