Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A note on incremental POD algorithms for continuous time data (1807.00045v1)

Published 29 Jun 2018 in math.NA

Abstract: In our earlier work [Fareed et al., Comput. Math. Appl. 75 (2018), no. 6, 1942-1960], we developed an incremental approach to compute the proper orthogonal decomposition (POD) of PDE simulation data. Specifically, we developed an incremental algorithm for the SVD with respect to a weighted inner product for the discrete time POD computations. For continuous time data, we used an approximate approach to arrive at a discrete time POD problem and then applied the incremental SVD algorithm. In this note, we analyze the continuous time case with simulation data that is piecewise constant in time such that each data snapshot is expanded in a finite collection of basis elements of a Hilbert space. We first show that the POD is determined by the SVD of two different data matrices with respect to weighted inner products. Next, we develop incremental algorithms for approximating the two matrix SVDs with respect to the different weighted inner products. Finally, we show neither approximate SVD is more accurate than the other; specifically, we show the incremental algorithms return equivalent results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.