Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Uncertainty Directed Trial Designs

Published 29 Jun 2018 in stat.AP | (1806.11370v1)

Abstract: Most Bayesian response-adaptive designs unbalance randomization rates towards the most promising arms with the goal of increasing the number of positive treatment outcomes during the study, even though the primary aim of the trial is different. We discuss Bayesian uncertainty directed designs (BUD), a class of Bayesian designs in which the investigator specifies an information measure tailored to the experiment. All decisions during the trial are selected to optimize the available information at the end of the study. The approach can be applied to several designs, ranging from early stage multi-arm trials to biomarker-driven and multi-endpoint studies. We discuss the asymptotic limit of the patient allocation proportion to treatments, and illustrate the finite-sample operating characteristics of BUD designs through examples, including multi-arm trials, biomarker-stratified trials, and trials with multiple co-primary endpoints.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.